Romana's Sign of the Times: Molecular Approaches for Protective *T. cruzi* Vaccines

Daniel F. Hoft, M.D., Ph.D.

Division of Immunobiology

Departments of Internal Medicine & Molecular Microbiology

Saint Louis University

Supported by NIH RO1-AI040196.

Viotti et al, Long-Term Cardiac Outcomes of Treating Chronic Chagas Disease with Benznidazole, Annals of Internal Medicine, 2006, 144:724-734.

Outcome	Treated Patients, s/ir (%)	Untreated Patients, in/o (%)	Adjusted Hazard Ratio (95% CI)	P Value
Change of dinical group:	12/289.00	40/289 (14)	0.34 (0.10-0.59)	0.002
New electrocardiographic abnormalities*	15/283 (0)	45/283 (140	0.27 (0.19-0.57)	0.001
3+	130/218 (60)	1377/212 0030	0.55 (0.44-0.70)	=0.001
3-	32/218 (19)	12/212 (6)	3.1 (1.06-4.06)	0.034

:.Lowering parasite load protects against Chagas dx progression (parasite-directed immunopathology, not autoimmunity)

Potential Vaccine Strategies

- Mucosal vaccinations to prevent infection
- Prophylactic vaccines to prevent/reduce disease
- Immunotherapies to prevent disease post-infection
- Antibody protection against infection/parasitemia
- T cell protection against intracellular parasites

Other Reasons for Immunologist to Study T. cruzi

- Model of mucosally invasive, intracellular pathogen
- Model for studies of differential trafficking
- Elucidate host-pathogen persistent interactions
- Elucidate fundamental parasite evasion strategies
- Protection requires CD4+ T, CD8+ T & B cells

Investigations of Mucosal, Cutaneous And Systemic Immunity

- Gastric RT-PCR/quantitative cultures
- Ocular/nasal epithelial RT-PCR/cultures
- "Natural" SQ challenge model studies
- Draining lymph node PCR/cultures
- Parasitemia/survival post-systemic challenge

Molecular & Cellular Requirements for T. cruzi Mucosal & Systemic Immunity

Immune spleen cells transfer mucosal/systemic protection
 Both CD4+ and CD8+ T cells required for 1° immunity
 Purified memory CD8+ T cells alone transfer protection
 Immune T cells from infected mice most protective

<u>Hypothesis</u>: Th2 and Th1 responses will induce optimal mucosal and systemic protection, respectively.

IN Th Bias Immunization Model

- Th0: TcAg + CT only
- Th1: TcAg + CT + IL-12/αIL-4
- Th2: $TcAg + CT + IL-4/\alpha IFN-\gamma$

Systemic Protection After Th Bias Immunizations						
<u>Immunization</u>	Survival after BFT					
None	0/9					
Th0	2/7					
Th1	6/6*					
Th2	1/8					
*P<0.05 by Fisher's exact test						

Conclusions Regarding Type 1 & 2 Responses for *T. cruzi* Immunity

- Type 1 immunity (IFN-γ) essential for:
 - -Development of immune memory
 - -Both mucosal & systemic protection
- Vaccines can focus on Type 1 induction, not differential mucosal & systemic responses

Development of Molecular Trans-sialidase Vaccines Protective Against Mucosal & Systemic T. cruzi Infection

- Highly conserved virulence factor
- •Neuraminidase activity/transfer of sialic acid
- *TS enzymatic activity required for infection
- •Induces mucosal & systemic protection
- •Successful in versatile expression systems
 - -(DNA, rec. protein + CpG, rSalm./rBCG/rAdeno)

Systemic Protection Against Tulahuén Induced by TS DNA/Protein/rSalmonella*

<u>Immunization</u>	NC DNA/rP/rSt	TS DNA/rP/rSt
DNA IM X 4	1/11 (9%)	10/10 (100%)†
rP + CpG IM X 2	0/5 (0%)	7/7 (100%)†
rP + CpG IN X 2	1/8 (13%)	8/8 (100%)†
rSalmonella IN X 3	0/5 (0%)	5/5 (100%)†

*Survival > 3 months after 5,000 *T. cruzi* BFT SC. †p<0.05 by Fisher's exact test

Sequencing of *T. cruzi* Genome in 2005 (El-Sayed et al, Science) Identified TS Superfamily

Gerie product	Heritary	Tritryp ortholog				reliables of the CTS of the Countries
mano-Sulfitate (TS) MASP Macin Macintamaposon hot gust (MHS) protein	1430 (803) 1377 (428) 863 (201) 752 (557)	7h No No No 7h	Table \$13.7; cree trans-militare (TS) and trans-sighten-like (TS-files) funding.			
Dispersed gene landly protein 1 (DCF-1)	565 [196]	Mo	Buildereity	Osersamo	Corne	Function
Surface protease (gptill)	425 (251)	70 = Lm No		SAPA		TS activity
Muciniba protein Republicial	123		Active TS		17225	tording to stalk autigational
rygotherical Rygotherical	1177 931 79	Service:		catetytic ete	10	birding to sink; auxigationing
Greats, putative	79	6m+78-		Section Stee		Senting to COAS
Protein kinase (CMGC group)	77	Am+7h				
Protein Kmase (several groups)	79	Am - 7b				Cell adhesion-lamitar tiriding
inpothetical protein	79 42 52	No				
Ciycosyltranoleruse Bran halicase (eF-4a)	36	Am+ Sh Am - Sh	Thinks*	Section (Add-	725	Samplement regulation
Protein Minase (NES group)	39	Jan - 75			740	Interaction with (T) adversingly inceptor
MASP related	36	No				
Clycosyltreroferase	36	Lm+Tb				meeting to state analogationism
hypothetical.	35	Am+Th	120000000000000000000000000000000000000			
Amino acid permesse	20	4m+78	TB poeudopenes		400	
AAA ATPoor Protein phosphataer	23	6m+7b				
Heat shock protein HGP70	30 21	(per 25)	Total		1400	
Protein kinase (171 group)	25	Am - 7h				
SPAA helikese	23	Am + 7th	*Proportion (board) ad-	is some of the closus.	seind neather.	
Phosphetidylinostal phosphate bises-related	25	Leve 75				
Pigoshetical	24	6m+75				
Congetion factor 1-y (EF-T-y)	22	Am+Th				
DNA helicau (DNA repair)	21	Am+76				
Activi-estated Cysteine peptidase	20 20	4,00 ± 78: 4,00 ± 78:				

- Unknown function of TS & other large gene families
- •Could TS superfamily have evolved for immune evasion?
- •Homologous but nonidentical T cell epitopes present
- •"Altered peptide ligands" could dampen T cell responses

Key Reasons to Pursue TS Vaccine Development

- TS-specific responses active during infection
- TS escape mutants not detectable
- TS best antigen tested in Hoft lab over 20y
- Humans mount robust TS-specific immunity

Note: reagents <u>needed</u> for careful study of affects of chronic infection on TS immunity.

Cloning of CD4/CD8 T cells & TCR TSaa57-74/359-67 specific Tc cloned by limiting dilution TCRα/TCRβ chains recovered from representative clones TCRα/TCRβ transduction reconstitutes TCR specificity PEM-NC PEM-TSaa357-74 pulsed PEM-T. cruz/Infected PEM-T. cruz/Infected TCRα/TCRβ transduction reconstitutes TCR specificity

Construction of TCR Retrogenic Mice

Ongoing experiments with TCR Rg mice in DRC.

Now Poised to Address Key Questions

- Frequency of TS-specific CD4+/CD8+ T cells required?
- Immune mechanisms required for optimal protection?
- Can T cells prevent/clear chronic *T. cruzi* infection?
- Are TS-specific T cells down regulated by infection?

New Collaboration with EpiVax

- Separate TS genes into functional vs nonfunctional sets
- Map HLA restricted immunogenic consensus sequences
- Test ICS immunity in HLA-DR/A2 dual transgenic mice
- Prepare TS functional vs nonfunctional TS ICS vaccines
- Assess vaccine-induced protection in HLA-DR/A2 Tg mice
- Evaluate if *T. cruzi*-infected humans respond to TS ICS
- Consider clinical development of new TS ICS vaccines

Summary of Presentation

- Chagas disease remains major public health problem
- Potential for prophylactic & immunotherapeutic vaccines
- TS-specific *T. cruzi* vaccines in pre-clinical development
- TS superfamily may have role in parasite persistence
- Novel immunodominance phenomenon aids parasite?
- State-of-the art reagents recently developed to address mechanisms of immunoprotection/immunoevasion
- Immunogenic concensus-based vaccines in development

T. cruzi Collaborators

Hoft Lab: SLU Comp. Med.:

Jenny Blase Dawn Schaffer/Leesa Bryant

Guy Bizek Pat Farrar/Tracy Smith/John Sagartz

Chris Eickhoff Sao Paulo:

Olivia Giddings Mauricio Rodrigues

Julie Goodnough
Cade Lawrence

Wash U/MEGAN Health:
Roy Curtiss/Donata Sizemore

Nelson Salazar Wash U/Pathology & Immunology:

Anita Schnapp Paul Allen/Dave Donermeyer

Nicole Sullivan EpiVax, Inc:

Ronnie Vasconcelos Anne De Groot/Bill Martin Xiuli Zhang Matt Ardito/Lenny Moise